Appendices

Pandemic / climate / Earth data

all numbers are in millions

Année

Pandemic deaths

Climate

deaths

Earthquake

deaths

Birth

death following

events

Classics

death

World population

2020

4

150,0

4,0

58,9

7 646,0

2021

7

145,3

7,0

59,5

7 725,4

2022

11

139,1

11,0

60,0

7 794,0

2023

145

132,5

145,0

59,5

7 721,5

2024

230

123,5

230,0

58,2

7 555,5

2025

240

120,9

240,0

56,8

7 378,3

2026

320

110,7

320,0

54,8

7 112,1

2027

340

113,8

340,0

52,6

6 831,1

2028

280

116,1

280,0

50,9

6 614,7

2029

210

112,4

210,0

49,8

6 466,2

2030

120

6

122,9

126,0

49,4

6 413,3

2031

60

12

121,9

72,0

49,4

6 413,7

2032

31

22

121,9

53,0

49,5

6 433,2

2033

21

45

122,2

66,0

49,6

6 439,9

2034

12

60

109,5

72,0

49,5

6 427,8

2035

7

70

104,1

77,0

49,3

6 405,4

2036

2

75

102,5

77,0

49,1

6 381,6

2037

1

79

95,7

80,0

48,9

6 348,2

2038

90

87,6

90,0

48,5

6 296,9

2039

102

83,1

102,0

48,0

6 229,5

2040

108

24

78,5

132,0

47,2

6 128,1

2041

110

29

76,0

139,0

46,3

6 017,9

2042

125

34

66,2

159,0

45,3

5 878,7

2043

135

39

60,0

174,0

44,0

5 719,4

2044

140

46

56,1

186,0

42,7

5 545,4

2045

150

52

53,2

202,0

41,2

5 354,0

2046

151

57

45,0

208,0

39,7

5 149,7

2047

154

65

35,0

219,0

37,9

4 926,1

2048

158

75

30,5

233,0

36,1

4 685,7

2049

168

84

25,3

252,0

34,1

4 422,9

2050

174

91

17,7

265,0

31,9

4 141,5

2051

181

99

14,1

280,0

29,6

3 843,7

2052

187

107

9,2

294,0

27,2

3 529,4

2053

198

115

7,1

313,0

24,6

3 196,2

2054

200

106

1,3

306,0

22,1

2 866,9

2055

212

100

1,7

312,0

19,5

2 534,6

2056

224

93

1,0

317,0

16,9

2 199,1

2057

237

83

0,4

320,0

14,3

1 862,6

2058

242

73

1,9

315,0

11,8

1 535,1

2059

257

63

1,5

320,0

9,3

1 204,8

2060

262

58

1,2

320,0

6,8

876,7

2061

277

48

0,9

325,0

4,2

545,9

E = mc2^{2} ?

The following demonstration aims to determine the frequency with respect to the mass to be sent into the large machine.

is justifiable as follows, in 3 points: on the one hand, we know via the formulas of special relativity that:

m=1(1v2c2)m^\prime= \frac{1}{\sqrt(1-\frac{v^2}{c^2})}

Moreover, by differentiating the mass with respect to the speed, we obtain: mv=dmdv=12m(1v2c2)32ddv(1v2c2)\frac{\partial m^\prime}{\partial v} = \frac{dm^\prime}{dv} = -\frac{1}{2}m(1-\frac{v^2}{c^2})^\frac{3}{2} \cdot \frac{d}{dv} (1-\frac{v^2}{c^2})

which is therefore equal to (1v2c2)322vc2(1 - \frac{v^2}{c^2})^\frac{-3}{2} \cdot \frac{2v}{c^2} soit mvc2(1v2c2)32\frac{mv}{c^2(1-\frac{v^2}{c^2}})^\frac{3}{2}

On the other hand, we know that mv=mvc2v2\frac{\partial m^\prime}{\partial v} = m^\prime \cdot \frac{v}{c^2-v^2}

that is m=mvc2v2vm^\prime = \frac{\partial m^\prime}{\partial v} \cdot \frac{c^2-v^2}{v}

Finally, in terms of momentum and Force

P=mvP = m^\prime \cdot v et F=Pt=mvt+vmtF = \frac{\partial P}{\partial t} = m^\prime \cdot \frac{\partial v}{\partial t} + v \cdot \frac{\partial m^\prime}{\partial t}

we therefore obtain that: F=mvc2v2vvt+vmtF = \frac{\partial m^\prime}{\partial v} \cdot \frac{c^2-v^2}{v} \cdot \frac{\partial v}{\partial t} + v \frac{\partial m^\prime}{\partial t}

and this is: F=1t(m(c2v2)v+vm)F = \frac{1}{\partial t} \cdot (\frac{\partial m^\prime \cdot (c^2 - v^2)}{v} + v \cdot \partial m^\prime)

from where Fx=xt(m(c2v2)v+vm)=c2mF \partial x = \frac{\partial x}{\partial t} ( \frac{\partial m^\prime \cdot (c^2 - v^2)}{v} + v \cdot \partial m^\prime ) = c^2 \cdot \partial m^\prime DomFdx=Domc2dm\int_{Dom} F \mathrm{d}x = \int_{Dom^\prime} c^2 \mathrm{d}m^\prime

either finally E=γmc2E = \gamma m c^2

EE — energy ;

kk = 1,380649×10⁻²³ J/K — Boltzmann constant;

cc = 299792458 m/s — speed of light in vacuum ;

λ\lambda — wave length ;

vv — frequency ;

\hbar = 6,62607015·10⁻³⁴ J·s — Planck's constant.

1eV1 eV = (e/C) J = 1,602176565(35)·1019^{-19} J ee = 1,602176565(35)·1019^{-19}C — elementary charge.

In addition, the frequency of sending is obtained via the relation: E=mc2=cλE = mc^2 = \hbar \frac{c}{\lambda} avec c=Emc = \sqrt{\frac{E}{m}}

λ=mc\lambda = m \cdot \frac{\hbar}{c}

with or finally: the frequency is therefore proportional to the mass.

Last updated